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An infinitely long circular cylinder is fixed with its generators horizontal so 
that it is half-immersed, with its axis lying in the free surface of water. A regular 
train of water waves is incident on the cylinder from an arbitrary horizontal 
direction, and is partly reflected and partly transmitted under the cylinder. 
In  the present paper we are concerned with the vertical component of the wave 
acting on the cylinder. It is assumed that the fluid is inviscid, that the fluid 
motion is irrotational, and that the depth of water is infinite. The equations of 
motion are linearized, and surface tension is neglected. 

We shall find it convenient to use the fact that the required vertical force 
component can be inferred from the solution of a related problem, which we shall 
call the generalized heaving problem. In  this latter problem a certain normal 
velocity is prescribed on the cylinder so that water waves which travel obliquely 
outwards are generated. There are no waves incident from infinity. When the 
prescribed velocity has the same phase everywhere on the cylinder the waves 
travel normally outwards, and in this case the generalized heaving problem 
reduces to the ordinary heaving problem, on which much information is already 
available. The generalized problem is solved here by a method which is a general- 
ization of the known method (Urselll949) for ordinary heaving (when the wave 
crests are parallel to the cylinder axis). Generalized-added-mass coefficients and 
generalized-wave-making parameters for generalized heaving are computed for 
a range of wavenumbers and angles of travel, and are extended to larger wave- 
numbers by means of asymptotic analysis. Reciprocity relations (the Haskind 
relations) are then used to obtain the vertical force component in the original 
transmission problem from the wave-making parameters of the generalized 
heaving problem. 

1. Introduction 
Although the translational motion of a ship is nonlinear, the oscillatory motion 

of the ship due to incident waves will be expected to be linear when the incident 
waves are small enough. Experiments have shown that this is actually the case. 
(References for the statements in this introduction are given in Ursell (1968).) 
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It is obvious that the response coefficients must involve properties of the trans- 
lational motion and cannot therefore be calculated rigorously in the present 
state of our knowledge. To correlate theory and experiment a semi-empirical 
approach (strip theory) is sometimes used: the ship is divided into numerous 
segments by vertical planes normal to the ship’s axis (these segments are known 
as strips), and the hydrodynamic force on the immersed surface of each strip is 
approximated by the force on the corresponding strip of an infinitely long 
cylinder of the same cross-section and oscillating in the same manner. In  this way 
the calculation of the virtual mass and damping of the ship is made to depend 
on the calculation of a class of two-dimensional linear boundary-value problems. 
The forward speed of the ship enters into the calculation only through the 
modification of period due to forward speed, i.e. the period of encounter of the 
ship in the waves, and possibly through the modification of boundary conditions 
due to forward speed. The results of such calculations can then be compared with 
experiments, and it is hoped that this method will throw light on the interaction 
of ships and waves. Since the equations of oscillatory motion are assumed to 
be linear the calculation can be divided into three stages. 

(i) To find the wave force on aJixed cylinder due to incident waves. 
(ii) To integrate the forces on each strip over the length of the ship, and thus 

(iii) To calculate the response of the ship to the total exciting force. 
In  the present paper we shall be concerned only with the first stage, of finding 

the force on a fixed horizontal cylinder due to incident waves. 
The most important application is to ships in head Seas (when the wave crests 

are normal to the axis of the ship). It has, however, been shown that, according 
to the linear theory, head seas cannot travel along an infinite cylinder without 
change of form (Ursell 1968), and strip theory is therefore not immediately 
applicable. The case of beam Seas (when the wave crests are parallel to the axis 
of the ship) is the only one that has so far been studied, and it is the added mass 
and damping parameters appropriate to beam seas that have been used in strip 
theory even when the incident waves are not beam seas. (For a discussion see 
Newman (1970).) In  the present paper we shall consider the vertical force per 
unit axial length on an infinitely long fixed horizontal cylinder when the waves 
are obliquely incident. (The horizontal force can be treated similarly but is not 
considered in the present paper.) The calculation is simplest for a half-immersed 
circular cross-section, and this is the problem with which we shall be concerned. 
The velocity potential can be expanded in an infinite series which is analogous 
to  the series for beam seas but more complicated, and which involves two 
parameters (wavenumber and angle of incidence). For each pair of parameters 
the pressure at any point of the cylinder can be found in principle by solving 
infinite systems of linear equations in an infinite number of unknowns; in 
practice these systems have to be replaced by a large finite system of equations. 
The required vertical force component is a linear combination of the unknowns. 
We shall see in $ 6  below that the same vertical force component can also be 
obtained from the solution of a different but related problem, the problem of 
generalized heaving described in the next section. The latter problem has the 

to find the total exciting force on the ship. 
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advantage that asymptotic results for short wavelengths are much more readily 
obtained, and that numerical results can be compared with the well-established 
special case of ordinary heaving studied by Ursell(l949) and many later writers. 

2. Statement of the mathematical problem 
Let the origin of a rectangular co-ordinate system be taken in the mean free 

surface of the fluid, and let the axes be chosen so that the x and z co-ordinates 
are horizontal and the y co-ordinate is vertical and increasing with depth. Let 
associated cylindrical polar co-ordinates ( r ,  8, x )  be defined so that 

x = rsin8, y = rcose, z = z. 

It is supposed that a half-immersed circular cylinder occupies the region r < a, 
- 00 < z < 00. The fluid will be treated as inviscid; then the motion, if originally 
irrotational, remains irrotational, and a velocity potential $(x, y, z, t )  exists. 
The equation of continuity is 

The linearized condition of constant pressure at  the free surface is 

when y = 0, 

see Lamb (1932, $j 227). When the motion is simple harmonic, of constant period 
2n/w, this free-surface condition takes the form 

K$+a$/ay = 0 when y = 0, 1x1 > a, (2.2) 

where K = w2/g. Additional boundary conditions are prescribed on the immersed 
surface (r = a, - in < 8 < *n, - 00 < x < 00) of the circular cylinder, and also 
a t  infinity. Two problems will be considered. 

(i) The scattering problem. The velocity potential is of the form 

cDf(x, y, x ,  t )  = $f(x, y) exp (iKz cosp - iwt )  (2.3) 

= $+, y) exp (ikx - iwt ) ,  say, (2.4) 

where k: = K C O S ~ ,  
and where 

(a2/8x2 + P/8y2 - k2) q$(x, y) = 0 when r > a, y > 0; (2 .5)  

K#f++$f/8y = 0 when y = 0, 1x1 > a; (2.6) 

= 0 when r = a, -Qn < 8 < *n; (2.7) 

gb ( - Ky + iKx sinp) +'exp ( - Ky - iKz  sinp) 

( - K y  + iKx sin p)  when x + + co, (2.9) 

0 

when z +  -00, (2.8) 

16-2 
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where b,, b; and b; are respectively the amplitudes of the incident, reflected and 
transmitted waves. It is seen that the angle p describes the direction of propaga- 
tion of these waves; for beam seas p = in. 

(ii) The generalized heaving problem. The potential is of the form 

@(x, y, x ,  t )  = $(x, y) exp ( ikx - iw t ) ,  (2.10) 

where (a2/ax2 + a2/ay2 - k2)  $(x, y) = 0 when r > a, y > 0;  (2.11) 

K$+a$/ay = 0 when y = 0, 1x1 > a;  (2.12) 

a$pr = -(wb/Kun) ( A  +iB)cos6 when r = a, -in 6 6 6 in; (2.13) 

$(x,y) -+ (gb/w)cosecpexp(-Ky+iKlxJ sinp) when 1x1 +a, (2.14) 

where b cosecp is the wave amplitude a t  infinity. It is convenient to treat b as 
prescribed, and A(Ka, p) and B(Ka, p) as parameters which are to be determined. 
The boundary condition (2.13) describes a flexural wave which travels along the 
surface of the cylinder and generates an oblique wave in the water. The general- 
ized heaving problem has no immediate physical application, but it is somewhat 
easier to compute than the scattering problem, and it can be readily compared 
with the well-known special case of beam seas. Also, the Haskind relation 
(8 6 below) shows that the vertical force on the fixed cylinder in the scattering 
problem can be deduced from the parameters A and B of the generalized heaving 
problem. The present paper (except for 5 6 below) will accordingly be mainly 
concerned with the generalized heaving problem. 

3. Expansion of the heaving potential $(x, y) 

It is convenient to introduce a positive quantity p which satisfies the equations 

coshp = K/k = secp, sinhp = tanp. 

The potential will be expanded as the sum of a suitable wave-source potential 
$o and of suitable wave-free potentials &, derived (in a different notation) in 
an earlier paper (Ursell 1968). We write 

where the contour of integration passes above the pole t = -,I? < 0 and below the 
pole t = /3 > 0. We have the expansion (Ursell 1962, equation (2.13)) 

I W 

$o(kr,6) = (ni-/3)coth/3 Io(kr)+2 ( -  l)mcoshm~Im(kr)cosm6 
m=1 

W + Ko(kr) - 2 cothp ( -  l)msinhmp (Iv(kr) cos v6)] , (3.2) 
m = l  v=m 

where the functions I,(kr) and K,,(kr) are the usual Bessel functions of imaginary 
argument (Watson 1944, chap. 3). Their series expansions are quoted by Ursell 
(1962, p. 502). Also (Ursell 1968, p. 814) 

q5,(kr,6)-tnicosecpexp(-Ky+iKlxlsinp) when 1x1 -+a, (3.3) 
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and the radiation condition at infinity is satisfied. We also write 
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$,(kr, 0)  = K2,(kr) COB 2mO + ( ~ / c o s ~ )  K2,-l(kr) cos (2m - 1) 8 
+ ~ ~ ~ - ~ ( k ~ )  cos (2m - 2) e (m = i , 2 , 3 ,  ...I. (3.4) 

These functions are exponentially small at  infinity. The functions q50 and 4, 
satisfy (2.11) and (2.12). We now write 

where the unknown real-valued coefficientsp,,, q2rn, A and B are to be determined 
from the boundary condition (2.13), which reduces to 

= -(A+iB)cosB, --in < 8 < in. (3.5) 

On account of (3.3) the radiation condition (2.14) a t  infinity is automatically 
satisfied. Let the operators 

be applied to this equation. In  this way two infinite systems of simultaneous 
linear equations are obtained, one system involving the unknowns A ,  p 2 ,  p4, . . . , 
the other the unknowns B, q,, q4, .. . . For any given value of Ku and any given 
value ofp these systems are solved approximately by retaining only a finite 
number of unknowns and the same number of equations. 

The vertical upward force per unit length of the cylinder is 

which is equivalent to 

(3.7) 
bw2 
K77 - 2pa- (L  - iM) exp (ilcx - iwt),  say, 

where 

are non-dimensional parameters. The force (3.6) can be resolved into components 
respectively in phase and in quadrature with the heaving velocity, i.e. with 
A + iB. More precisely, we write 

L-iH = (A+iB)(C,-iC,),  (3.10) 

whence 
LA-MB 
A2+B2 c, = 

MA+LB 
A2+B2 ' ca = (3.11) 
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C, is evidently an added-mass coefficient, and C, is a damping coefficient which 
can be related to the amplitude ratio, defined to be 

nKa cosecp 
Amplitude of oscillation of the cylinder - (b/Kan) JA +iBI - (A2+B2)* 

(3.12) 

In  fact, on equating the work done by the cylinder to the energy carried to 
infinity by the waves it is found that 

LA - M B  = (A2 + B2) C ,  = &n2 cosec p) 
and it follows that 

- b cosec ,u Wave amplitude a t  infinity - 

(3.13) 

(3.14) 

= 4 sinp (Ka)-2 (amplitude ratio)2. (3.15) 

We note that our normalization of C, - iC, is perhaps not the most convenient 
one since it can be shown that in the case of beam seas Ca+ in as Ka-tco, 
whereas the conventional added-mass coefficient tends to unity. The force on 
the cylinder is defined without ambiguity by (3.6) and (3.10). 

4. Asymptotic behaviour at short wavelengths 
It was found previously, in the calculations for beam seas (p = in), that the 

methods of computation described above are not convenient for large values of 
Ka. For such values it was, however, possible to find asymptotic approximations 
(analyticalIy in Ursell (1953), by plausible reasoning in Ursell (1954)) which 
could be joined up smoothly with the numerical solution for moderate Ka to 
give the added mass and damping over the whole frequency range (Urselll957). 
Similar difficulties arise in the present problem when Ka is large, but the asymp- 
totic treatment is now more difficult since the second parameter ka = Ka cosp 
involved here need not also be large near beam incidence. In  the present work 
we shall confine ourselves to the case when both Ka and ka are large. To find the 
force components, let us consider the potential 

a 2  a 2  
which satisfies 6 = 0 when r > a, y > 0; 

$ = 0 when y = 0, 1x1 > a;  I 
$=-- Kan bw (A+iB)cosO when r = a, -in < 0 < in. 

24e- Em/:. (Im $1 cos e de = 0, 

ar (4.3) 

Except in a surface layer, the potential $may be expected to give a good approxi- 
mation to @ for large Ka since (4.2) is the formal limit of (2.12) for large Ka. 
We find that 
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and so, to a first approximation, 

The next term, which has been found rigorously by Green (1971), is of order 
( ka)-4. 

n 

aw 
cosh3 w(cosh w - coshp) 

'(2) - - 

2 P 7r I +:) (4.5) +-+- cosh3Psinhp 2 cosh3p cosh2@ 4 coshp ' 

where the integral is to be interpreted as a Cauchy principal value, and smaller 
terms have been neglected. (These terms can also be found more simply by 
plausible reasoning.) It is seen that Cg) is negligible, whereas Ck2) is the leading 
term in the expansion of Cv; see also 5 5 below. 

5. The wave amplitude at infinity 
The leading term in C, for short wavelengths can also be obtained by con- 

sidering the waves at infinity. The non-rigorous argument given here is an 
extension of the argument given in earlier work (Ursell 1954) for ka = 0, and 
is applicable for large Ka and arbitrary ka. We consider the waves travelling 
towards x = +a. Since Ka is large the wave amplitude depends only on the 
behaviour of the potential near 8 = &r. (Cf. Ursell (1954, equation (3.1)), and 
also equation (5.4) below.) Consider the wave-free potential 

bw A + i B  
KankK;(ka) $=--- [Kl (kr)cos8+~cosp(K, , (kr)  + K2(kr) C O S ~ ~ ) ] ,  (5.1) 

for which 

Since the potential (5.1) is wave-free we conclude that the radial-velocity 
distribution [...I in (5 .2 )  generates the same waves at infinity as the velocity 
distribution {. . .>. 

We now examine the individual terms in these distributions. In  [. ..I both 
terms vanish near 8 = in, but the second term is much smaller than the first, 
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since cos2 8 < cos 8 near 8 = $ 7 ~  and since IKJK;] is uniformly bounded for all 
ka. Thus the contribution to the waves from the second term of [. . .] is negligible. 
Similarly, the second term in {. . .} is negligible. We conclude that the radial- 
velocity distribution - (bw/Kan) (A+iB) cose of (5.2) gives rise (to a first 
approximation) to the same waves as the constant radial-velocity distribution 

K;1- KA -- bw (A+iB)cosp-, 
2Kam K;  

(5.3) 

which does not vanish near 8 = in. The velocity (5.3) is the normal velocity on 
r = a;  as in Ursell (1954) we consider instead the waves generated by the same 
normal velocity distributed over the vertical tangent x = a. It can be shown that 
the potential a t  infinity due to a horizontal-velocity distribution U&) over x = a 
is given by the wave-train potential 

(5.4) - 2i exp ( - K y  + iK(x - a)  sinp) cosecp Uo(y’) exp ( - Ky’) dy‘. 
!OW 

On substituting (5.3) for Uo(y) and comparing with (2.14) we see that 

Kar KL(Ica) - KA(ka) 
A + ~ B  -i-( exp (iKa sinp) 

cosp K;(ka) 

1 sin p Kan cosec p 
C, = -- 

2 ( Ka)2 ( I A + iB I as Ka + co. Thus ) , cf. (3.14) 

( 5 . 5 )  

when Ica is large, 
2 

( Ka)4 sin p 
- - 

in agreement with (4.5) above. The preceding argument appears to be applicable 
for all values of ka, when Ka is large. When ka -+ 0 it is readily verified that 
(5.6) gives the correct result 8(Ka)-4 for the known case of beam seas. 

6. The vertical force on a fixed cylinder 
So far we have been concerned with generalized heaving. We shall now obtain 

the vertical force on a fixed cylinder by using a reciprocity argument. (Relations 
obtained in this way are known as Haskind relations in ship hydrodynamics.) 
Equation (3.6) shows that the upward vertical force per unit length on a fixed 
cylinder is 4. 

-?In 
ipaw exp (ikz - iwt) 1 #f (a sin 0, a cos 8) cos 8 do, (6.1) 

where q+(x, y) is the potential defined in Q 2 above. Let Green’s theorem 

be applied to the functions r& and # defined in 5 2, and let the integration be taken 
along the boundary of the region occupied by the fluid lying between vertical 
planes x = -I- R and x = - R, where the length R will be made to tend to infinity. 
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2alA 

0.08 
0.24 
0 4  
0.56 
0.72 
0.87 
1.03 
1.19 
1.35 
1.51 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 
12.12 

2a/A 

0.08 
0.16 
024 
0-25 
0 4  
0.5 
0.56 
0.66 
0.72 
075 
0.87 
1.00 
1.03 
1.18 
1.25 
1.35 
1.5 
1.51 
3.18 
4.77 
6.36 

0.25 
0.75 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 

10~00 
15.00 
20.00 
25.00 
30.00 
35acl 
40.00 

Ka 

0.25 
0.52 
0.75 
0.78 
1.25 
1.57 
1.75 
2.09 
2.25 
2.36 
2.75 
3.14 
3.25 
3-75 
3.93 
4.25 
4.71 
4.75 

10.00 
15.00 
20.00 

- 15.2 
- 9.1 

- -9.7 
- 11.3 
- 13.0 
- 14.5 

- - 15.8 
- 16.7 

-68.7 -17.4 
-66.2 -17.8 
-39.9 - 
-14.8 - 

10.2 - 
35.2 - 
60.3 - 
85.3 - 

110.0 - 

- 
- 

- 
- 
- 
- 

Asymptote 
p = 55" p = 55" 

- 67.0 

-38.2 

- 17.0 

3.8 

25.1 

47.0 

69.4 
92.0 

115.0 

138.0 

- 

- 

- 
- 

- 
- 

- 
- 

- 
- 
- 

- 38.4 
- 23.7 

- - 22.4 
- 22.0 
- 20.5 
- 17.7 
- 14.0 
- 9.6 

-26.9 -4.6 
-19.5 0.81 

58.4 - 
133.0 - 
207.0 - 
281.0 - 
355.0 - 
429.0 - 
504.0 - 

- 
- 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
12.9 
25.1 

152.0 
273.0 
394.0 
516.0 
637.0 
758.0 
8i9.0 

-51.6 
- 32.1 
-25.8 
- 1943 
- 12.4 
- 3.7 

5.7 
15.9 
26.4 
37.2 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
49.7 
66.1 

239.0 
403.0 
567.0 
732.0 
896.0 
- 
- 

Asymptote Asymptote Asymptote 
p = 65" p =  65" p = 75" p = 75" p = 85' 

- 67.6 
- 

- 38.4 

- 13.9 

10.1 

34.4 

59.2 

84.3 
109.0 

135.0 

160.0 

- 

- 
- 

- 
- 

- 

- 

- 
- 
- 

- 68.6 

- 38.5 

-11.9 

14.3 

40.8 

67.5 

94.5 
122.0 

149.0 

176.0 

- 

- 

- 
- 

- 

- 

- 

- 
- 
- 
- 

TABLE I .  T a r 1  ( B / A )  (degrees) 

-59.0 
-36.1 
- 24.2 
- 12.5 

14.2 
28.7 
43.7 
59.0 
74.5 

0.32 

- 
- 
- 
- 
- 
- 
- 

p = 85" /A = 90" 

- 69.1 

- 38.8 

- 11.2 

16.2 

43.8 

71.5 

99.5 
128.0 

156.0 

184.0 

- 
- 
- 

- 
- 
- 

- 

- 

- 
- 
- 

- 63.3 
-37.7 
- 20.7 
-4.1 
13.4 
31.7 
50.5 
69.7 
89.1 

108.7 
- 
- 
- 
- 
- 
- 
- 

The integrand vanishes on the segments y = 0, a < 1x1 6 R, on account of (2.6) 
and (2.12), and thus the only non-vanishing contributions to the integral in (6.2) 
come from the semicircle and from the planes x = - R and x = + R. The con- 
tribution from the semicircle is 

from (2.7) and (2.13). 

the contribution from x = - R is 
The contribution fromx = R is seen (from (2.9) and (2.14)) to vanish as R-tco; 



250 W .  E. Bolton and F .  Ursell 

2alh 

0.08 
0.24 
0.4 
0.56 
0.72 
0.87 
1.03 
1.19 
1.35 
1.51 
1.91 
2.23 
2.55 
2436 
3.18 
4.77 
6.36 
7.96 

2alA 

0.08 
0.16 
0.24 
0.25 
0.4 
0.5 
0.56 
0.66 
0.72 
04'5 
0.87 
1.00 
1.03 
1.19 
1.25 
1.35 
1.5 
1.51 
1.91 
2.23 
2.55 
2.86 
3.18 
4.77 
6.36 
7.96 

K a  

0.25 
04'5 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
25.0 

Ka 

0.25 
062 
0.75 
0.78 
1.25 
1.57 
1.75 
2.09 
2.25 
2.36 
2.75 
3.14 
3.25 
3.75 
3.93 
4.25 
4.71 
4.75 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
25.0 

Asymptote Asymptote Asymptote Asymptote Asymptote 
p = 5" p = 5" p =  15" p =  15" p =  25" p = 25" p =  35" p = 35" p =  45" /6= 45" 

- 7.72 
- 16.6 
- 22.5 
- 27.8 
- 33.4 
- 39.5 
- 46.2 
- 53.5 

23.5 61.5 
29.8 70.2 
49.0 - 
67.9 - 
90.0 - 

115.0 - 
143.0 - 
332.0 - 
599'0 - 
944.0 - 

- 
- 
- 
- 
- 
- 
- 
- 

23.4 
29.7 
48.8 
67.7 
89.7 

115.0 
143.0 
331.0 
598.0 
943.0 

3.25 
6.44 
9.34 

12.7 
16.8 
21.7 
27.4 
33.8 
41.1 
49.1 - 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

23.1 
29.4 
485 
67.2 
89.1 

114.0 
142.0 
330.0 
596.0 
941.0 

2.58 
4.73 
7.23 

10.4 
14.4 
19.2 
24.7 
31.0 
38.2 
46.1 
- 
- 
- 
- 
- 
- 
- 
- 

- 2.37 
- 4.11 
- 6.41 
- 9.45 
- 13.3 
- 17.9 
- 23.2 
- 29.3 

22.8 36.3 
29.0 43.9 
47.8 - 
66.4 - 
88.1 - 

113.0 - 
141.0 - 
328.0 - 
593.0 - 
937.0 - 

- 2.28 
- 3.8 
- 5.91 
- 8.76 
- 12.3 
- 16.7 - 21.8 
- 27.6 

22.2 34.2 
28.3 41.6 
46.8 - 
65.1 - 
86.6 - 
111.0 - 
139.0 - 
324.0 - 
588.0 - 
931.0 - 

Asymptote Asymptote Asymptote Asymptote 

TABLE 2. (A*++B*)* 

which (from (2.8) and (2.14)) is seen to tend to  

1 lom { 9 e x p  ( - ~y + i ~ x  sinp) - - cosecp exp ( - ~y - iKx sinp) 
ax a (gb  0 

1 - @ cosecp exp ( - ~y - iKxsinp1- 2 exp ( - ~ y +  i ~ x  sinp) 
W ax a ( g b  0 

= - g2bb, i lW2.  
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2aIA 

0.08 
0.24 
0.4 
0.56 
0.72 
0.87 
1.03 
1.19 
1.35 
1.51 
1.91 
2.23 
2.55 
2-86 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 
12.72 

2a/A 

0.08 
0-16 
024 
0.25 
0.4 
0.5 
0.56 
0.66 
0.72 
0.75 
0.87 
1.0 
1.03 
1.19 
1.25 
1.35 
1.5 
1.51 
1.91 
2.23 
2.55 
2.86 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 
12.72 
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Asymptote Asymptote Asymptote Asymptot,e Asymptote 
Ka 

0.25 
0.75 
1.25 
1.75 
2.25 
2.75 
345 
3.75 
4.25 
4.75 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 

1.16 
1.62 
2.0 
2.26 
2.42 
2.5 
2.53 
2.52 
2.48 
2.43 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

1.9 
1.49 
1.25 
1.08 
0.95 
0.85 
0.55 
0.4 
0.32 
0.27 
0.23 
0.2 

0.93 
1.41 
1.62 
1.67 
1.62 
1.54 
1.44 
1.34 
1.25 
1.17 - 
- 
- 
- - 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

1.2 
0.92 
0.77 
0.67 
0.59 
0.52 
0.34 
0-25 
0.2 
0.16 
0.14 
0.12 

- - 
- 
- 
- 
- 
- 
- 
- 

0.9 
0.69 
0.58 
0.5 
0.44 
0.39 
0.25 
0.18 
0.15 
0.12 
0.1 
0.09 

- 
- 
- 
- 
- 
- 
- 

0.99 
0.85 
0.75 
0.57 
0.48 
0.41 
0-36 
0.32 
0.2 
0.15 
0.12 
0.099 
0.084 
0.073 

Asymptote Asymptote Asymptote Asymptote 
p= 55" p =  55" /I= 65" p =  65" p =  75" p = 75" p = 85" p = 85- p= 90' Iila 

0.25 
0.52 
0.75 
0.78 
1.25 
1.57 
1.75 
2.09 
2.25 
2.36 
2.75 
3.14 
3.25 
3.75 
3.93 
4.25 
4.71 
4.75 
6.0 
7.0 

9.0 
10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 

8.0 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.89 

0.76 

0.67 
0.51 
0.42 
0.36 
0.32 
0.28 
0.18 
0.13 
0.1 
0.086 
0.073 
0.064 

- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0.85 

0.73 

0.64 
0.48 
0.4 
0.34 
0.3 
0.27 
0.17 
0.12 
0.096 
0.079 
0.067 
0.058 

- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1.00 

0.87 

0.77 
0.59 
0.5 
0.42 
0.37 
0.33 
0.2 
0.14 
0.11 
0.088 
0.073 
0.062 

- 
- 

TABLE 3. Amplitude ratio nKa eosec p/(Aa+Ba)* 
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2a/h 

0.08 
0.24 
0.4 
0.56 
0.72 
0.87 
1.03 
1.19 
1.35 
1.51 
3.18 
4.77 
6.36 
7.96 
964 

11.14 

2a/h  

0.08 
0.24 
0.4 
0.56 
0.72 
0.87 
1.03 
1.19 
1.35 
1.51 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 

Iia 

0.25 
0.75 
1.25 
1.75 
2.25 
2.76 
3.25 
3.75 
4.25 
4.75 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 

Ka 

0.25 
0.i5 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 

Asymptote 
p = 5 "  p = 5 "  

- 0.95 

- 0.11 
- 0.73 

0.051 
- 0.036 
- 0.026 
- 0.02 
- 0.015 
- 0.011 

0.00036 - 
0.00022 - 
0400058 - 
0.000028 - 
04000154 - 

0.2 - 

- 

- - 

____ ~~ 

Asymptote Asymptote Asymptote Asymptote 
p = 15' p,- 15' p =  25" p =  25" p =  35" p =  35" p== 45" 

- 1.53 - - 1.8 - 1.75 
- 0.51 - - 0.46 - 0.52 
- 0.21 - - 0.22 - 0.22 - 0.12 - 0.11 - 0.096 - 

- 0.067 - 0.056 - 0.049 - 
- 0.04 - 0.032 - 0.02i - 
- 0.025 - 0.019 - 0.016, - 

0.012 - 0.01 - - 0,017 - 
- 0.011 - 0.008 - 0.0065 - 
- 0.0079 - 0.0055 - om44 - 

040078 - 0~00048 - 0.00034 - 0.00028 
0.000152 - O.ooOo94 - O.CK"I68 - O~ooOo56 
0400048 - O.ooOo30 - O~ooOo22 - 0.000076 

04xcal72 0~0000198 - 0~0000122 - 0.0000090 - 
0.0000094 - 0~0000058 - 0~0000042 - 0.0000034 

0")0018 0~0000052 - 0.0000032 - O.OooOo24 - 

Asymptote Asymptote Asymptote 
/L= 55" /I,= 55" p =  65" p -65"  p =  75" I(.= 75" p =  85" 

- 1.19 - 1.08 - 1.02 0.96 
- 0.46 - 0.45 - 0.44 0.44 

0.2 - 0.2 - 0.21 0.22 
- 0.091 - 0.097 - 0.11 0.12 
- 0.046 - 0.05 - 0.058 0.07 
- 0'025 - 0.028 - 0.033 0,042 
- 0.015 - 0.016 0.01856 0.02 0.026 
- 0.0092 - 0.01 0.01046 0.013 0.017 
- 0.006 - 09065 0.00634 OGX31 0.012 
- 0.004 - 0.0044 0.00406 0.0055 0.0081 

- 

040024 - 0.00022 - 0.00020 - - 
04GfM48 - 0.000044 - 0~000040 - - 

0.0000152 - 0~0000138 - O~ooOo13 - - 

0'0000062 - 0~0000056 - O.ooo0052 - - 
O~OooOo30 - 0~0000028 - O.OooOo26 - - 
o ~ m o 1 6  - 0~0000014 - 0.0000014 - - 

TABLE 4. Force component in phase with velocity, C, = (AL-BM)/(A*+B*) 

,u = 45" 

1.33 
0.48 
0.2 
0.091 
0.046 
0.025 
0.015 
0.0092 
OGIl59 
0004 
- 

wb (a+i~)j+' #fcoSeae-- ig2bb, = 0, It follows that -- 
K7I -4. w2 

whence 

where b, is the amp1itude"of the incident wave. The force can now be found from 
(6.1); it is 

per unit length. 

7. Results 
The mathematical procedure described in 5 3 was programmed in IBM 11 30 

Fortran to give the motion parameters tan-lB/A and (A2+B2)& defined by 
equations (2.13) and (2.14); the amplitude ratio n-Ka cosec,u/(A2+ B2)* defined 
by (3.12); and the added-mass coefficient C, and the damping coefficient C, 
definedby (3.11).Tables 1-5tabulatethecomputedresultsforp = 5 O ,  15"' ..., 85" 
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2a/A 

0.08 
0.24 
0.4 
0.56 
0.72 
047 
1.03 
1.19 
1.35 
1.51 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 
12.72 

2alA 

0.08 
0.16 
0.24 
0.25 
0.4 
0.5 
0.56 
0.66 
0.72 
0.75 
0.87 
1.0 
1.03 
1-19 
1.25 
1.35 
1.5 
1.51 
3.18 
4.77 
6.36 
7.96 
9.54 

11.14 
125'2 

0.25 
0.75 
1.25 
1.75 
2.25 
2.75 
3.25 
3.75 
4.25 
4.75 

10.0 
15.0 
20.0 
25.0 
30.0 
35.0 
40.0 

- 
- 
- - 
- 
- 
- - 
- 

0.15 
0.075 
0.051 
0.038 
0.031 
0.026 
0.022 
0.019 

3.72 
1.26 
0.72 
0.49 
0.37 
0.29 
0.24 
0.2 
0.18 
0.16 - 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

0.15 
0.077 
0.052 
0.039 
0.032 
0.027 
0.023 
0.02 

2.5 
1.02 
0.59 
0.4 
0.31 
0.25 
0.22 
0.19 
0.17 
0.15 - 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

0.16 
0.082 
0.056 
0.042 
0.034 
0.028 
0.024 
0.021 

1.62 
0.8 
0.49 
0.36 
0.29 
0.25 
0.22 
0.19 
0.17 
0.16 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 

0.17 
0.090 
0.061 
0.046 
0.037 
0.031 
0.027 
0.024 

1.16 
0.66 
0.45 
0.36 
0.3 
0.26 
0.23 
0.21 
0.19 
0.17 - 
- 
- 
- 
- 
- 
- 

0.25 
0.52 
0.75 
0.78 
1.25 
1.57 
1.75 
2.09 
2.25 
2.36 
2.75 
3.14 
3.25 
3.75 
3.93 
4.25 
4.71 
4.75 

10.0 
15.0 
20-0 
25.0 
30.0 
35.0 
40.0 

0.73 

0.5 

0.46 

0.44 

0.41 

0.39 

0.36 
0.33 

0.31 

0.29 

- 
- 

- 

- 

- 

- 

- 

- 

- 
. -  
- 
- 
- 
- 
- 

TABLE 5. Force component in phase with acceleration, C, = (A&i+BL)/(A2+B2) 

- 
- 
- 
- 
- 
- 
- 
- 
- 

0.19 
0.10 
0.070 
0.053 
0.043 
0.036 
0.031 
0.027 

0.93 
0.58 
0.44 
0.37 
0.33 
0.29 
0.26 
0.23 
0.21 
0.19 - 
- 
- 
- 
- 
- 
- 

and Ka = 0-25, 0.75, ..., 4.75, together with values for the case of ordinary 
heaving (p = 90') taken from Ursell (1949, 1957). The asymptotic formulae for 
the same five quantities (given in $$4 and 5) were also computed for the same 
values of p and for Ka > 5, and are tabulated in the same tables. As was to be 
expected, there are discrepancies between the computed values and the asymp- 
totic formuIae near Ka = 5.  It is suggested that parameter values for Ka > 5 
are best found by a method of graphical interpolation; cf. $ 4 above. For the case 
p = 90' the phase angle tan-lBtA, the amplitude ratio and the added-mass 
coefficient were interpolated in this way in Ursell (1957) and the same three 
parameters are found to be the most suitable for interpolation in the present 
work. (It was found, however, that for p = 5' the phase angle could not easily 
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FIGURE 1. Damping coefficient. -0-, computed values; -- A--, asymptotic values. 
(a)  ,U = 5". ( b )  ,U = 45". (c) ,U = 85". 
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0 2 4 6 8 10 
Ka 

I I I I I I 1 
0 0.5 1.0 1.5 2.0 2.5 3.0 

2alh 

0 1 2 3 4 5 
Ka 

I I I 1 
0 0.5 1.0 1.5 

2a /h  

FIGURE 2. Added-mass coefficient. -0-, computed values. --A- -, asymptotic values. 
(a )  p = 5'. ( b )  ,u = 45". (c) -0-, ,u = 85"; -+-, ,u = go", reference values (UrseII 1949). 



256 W .  E. Bolton and F .  Ursell 

be interpolated between Ka = 4-75 and Ka = 00, although the discussions in 3 5 
would be expected to be valid for small values of p.) 

For convenience the values of the generalized damping coefficients for ,u = 5", 
45' and 85" are also presented graphically in figures 1 (a)-(c), and the values of 
the generalized added-mass coefficient for the same angles in figures 2 (a)-(c). 
These parameters refer to the generalized heaving problem. The reader is 
reminded that the vertical force due to oblique waves on a fixed cylinder is given 
by (6.3) above, and involves only the parameters A and B. 
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